1. For two sets A and B show that the following statements are equivalent.

a) $A \subseteq B$

b) $A \cup B = B$

c) $A \cap B = A$

Hint: Show that $a \Rightarrow b$, $b \Rightarrow c$ and $c \Rightarrow a$

2. Establish the following set theoretic relations:

a) $A \cup B = B \cup A$, $A \cap B = B \cap A$ (Commutativity)

- b) $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$ (Associativity)
- c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributivity)
- d) $A \subseteq B \iff B^c \subseteq A^c$
- e) $A \setminus B = A \cap B^c$
- f) $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$ (De Morgan's laws)

Note that for $A \subseteq \mathbb{R}$, the <u>complement</u> of A, written A^c , refers to the set of all elements of \mathbb{R} not in A. Thus,

$$A^c = \{x \in \mathbb{R} : x \notin A\}$$

3. Use the induction argument to prove that

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

for all natural numbers $n \geq 1$.

4. Use the induction argument to prove that $n^3 + 5n$ is divisible by 6 for all natural numbers $n \ge 1$.

5. Let f, g be two functions defined from \mathbb{R} into \mathbb{R} . Translate using quantifiers the following statements:
1. f is bounded above;
2. f is bounded;
3. f is even;
4. f is odd;
5. f is never equal to 0;
6. f is periodic;
7. f is increasing;
8. f is strictly increasing;
9. f is not the 0 function;
10. f does not have the same value at two different points;
11. f is less than g ;
12. f is not less than g .

6. Consider the four statements

(a) ∃x ∈ ℝ ∀y ∈ ℝ x + y > 0;
(b) ∀x ∈ ℝ ∃y ∈ ℝ x + y > 0;
(c) ∀x ∈ ℝ ∀y ∈ ℝ x + y > 0;
(d) ∃x ∈ ℝ ∀y ∈ ℝ y² > x.

1. Are the statements a, b, c, d true or false ?

2. Find their negations.

7. Show by induction that if X is a finite set with n elements, then $\mathcal{P}(X)$, the power set of X (i.e. the set of subsets of X), has 2^n elements.